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Abstract

This is an expository survey of the (univariate) theory of extreme

values and the estimation of the parameters of the related extreme-

value distributions. This survey was written at the invitation of

Professors N.L. Johnson and S. Kotz, editors of the forthcoming

Encyclopedia of Statiatical Seneee'to be published by John Wiley

and Sons, Inc., New York. The theory of extreme values plays a

fundamental role in several areas of applied statistics, such as

the analysis of flood flows, the reliability of complex systems,

the analysis of air pollution data, etc. In addition to surveying

(without proofs) the basic results of extreme value theory and the

estimators of the parameters of the extreme value distributions,

this survey presents a brief discussion of the current research in

these areas.
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EXTREME VALUE DISTRIBUTIONS

by

Nancy R. Mann*
Rockwell International Science Center

P.O. Box 1085
Thousand Oaks, California 91360

and

Nozer 0. Singpurwalla**
Department of Operations Research
The George Washington University

Washington, D.C. 20037

The theory of extreme values, and the extreme value distributions,

play an important role in theoretical and applied statistics. For

example, extreme value distributions arise quite naturally in the

study of size effect on material strengths, the occurrence of floods

and droughts, the reliability of systems made up of a large number of

components, and in assessing the levels of air pollution. Other

applications of extreme value distributions arise in the study of what

are known as "record values" and "breaking records." For an up-to-date

and a fairly complete reference on the theory of extreme values, we

refer the reader to the recent book by Galambos (1978). For a more

*Research supported by the Office of Naval Research, Contract
No. N00014-76-C-0723.

**Research supported by the NucJ-ear Regulatory Commission under
Contract No. NRC-04-78-239,,'ith The George Washington University.
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classical yet honorable treatise on the subject, we refer to Gumbel

(1958).

1. Preliminaries

Suppose that X1,X2,..*,X n are independent and identically

distributed random variables from a distribution F(x) which is

assumed to be continuous. The theory of extreme values primarily
concerns itself with the distribution of the smallest and largest

values of X1 ,x2,...,X n . That is, if

i~~i X1 : min(X1,X z " ' n X(1 1 1

i i Xn:n  29 %'(l2 -X n ) - (n) ,(1)

and

then kncwing F(x), we would like to say something about

Ln(x) - Pr[X(l) 4x] and Hn(x) Pr[X(n) <x]. The random variables

X(,) and X(n, are also known as the extreme values.

In order to give some motivation as to why the random variables,

i (1) and X(n) , and their distribution functions are of interest to us,

we shall consider the following situations:

1. Consider a chain which is made up of n links; the chain

breaks when any one of its links break. The first link

to break is the weakest link; that is, the one which has

the smallest strength. It is meaningful to assume that

the strength of the tth link, say X, i-l,2,.*,,n is a

random variable with distribution function F(x). Since

the chain breaks when its weakest link fails, the strength

of the chain is therefore described by the random variable

X(1) = min(X1 ,x2, . . ,Xn).

2
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2. Consider an engineering or a biological system which is

made up of n identical components, all of which may function

simultaneously. For example, a large airplane may contain

four identical engines which could be functioning simultane-

ously, or the human respiratory system which consists of

two identical lungs. The system functions as long as any

one of the n components is functioning. Such systems are

known as pa=zZZe,-redzndant 8ystems and occur quite often

in practice. Suppose that the time to failure (the lifelength)

of the ith component, say Xi, i=l,2,...,n is a random

variable with distribution function F(x). Since the system

fails at the time of failure of the last component, the

lifelength of the system is described by the random variable
X (n) = max(Xl, X2 ,-...,xn).

It is easy to envision several other physical situations in which

the random variables X(,) and X(,) arise quite naturally. For instance,

the use of X(n) for setting air pollution standards is discussed by
Singpurwalla (1972) and by Mittal (1978); and the use of X(1 ) in

studying the time for a liquid to corrode through a surface having

a large number of small pits is discussed in Mann, Schafer, and

Singpurwalla (1974), p. 130.

2. Distribution of the Extreme Values

Even though our assumption that XlSX2,*.,Xn are independent is

hard to justify in practice, we shall, in the interest of simplicity

and an easier exposition, continue to retain it. Note that

Ln(X)-Pr[X(I ) Ix1-I-Pr[X(l )  >x1

- l-Pr[Xl >xX 2 >x,. . . ,xn>x] 

3
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since the probability that the smallest value is larger than x is the

same as the probability that all the n observations exceed x. Because

of independence

n [ x
Ln() l PrX i >x] = 1 - (l-F(x)) n , (2.1)

since all the n observations have a common distribution F(x). Using

analogous arguments we can show that

Hn(X) = Pr[X(n) x] = (F(x))n (2.2)

Thus under independence, when F(x) is completely specified, we can,

in principle, find the distribution of X (1) and X (n)  Often the

distribution functions, L (x) and H x), take simple forms. Forn n
example, if F(x) is an exponential distribution with a scale parameter

X>0, that is, if F(x) = 1 - e-xx, x >O0, then Ln(X) = 1 - e nXx

-again an exponential distribution with a scale parameter nX.

Despite the simplicity of the above results, there are two

considerations which motivate us to going beyond Equations (2.1) and

(2.2). The first consideration pertains to the fact that in many

cases L (X) or H (x) do not take simple and manageable forms, and the

second consideration is motivated by the fact that in many practical

applications of the extreme value theory n is very large. For example,

if F(x) = 1 - eXx, then Hn(X) = - e ,x)n' and when F(x) is the
distribution function of a standard normal variate, then

/x ) n
Hn(x) = l--9-es /2 ds . It so happens that under some very

general conditions on F(x), the distributions of X(,) and X(n) when

n becomes large take simple forms. The distributions Ln(X) and Hn(x),

when n- , are known as the asymptotic (or the Zimiting) dietribution

4
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of extreme vaZue8, and the associated theory which enables us to study

these is known as the aemjptotic theory of extremee; the word "asymptotic"

describes the fact that n is getting large.

2.1 The Asymptotic Distribution of Extremes

The key notion which makes the asymptotic distributions of X(1)

and Xn of interest is that for some constants an, Bn > O, Yn, and

6n > 0, the quantities (X(l) - an)/ n and (X(n) - Yn)/6n become more
and more independent of n. The an. Ong Yn' and 6n are referred to as

the normaZizin conetants. A goal of the asymptotic theory of extreme

values is to specify the conditions under which the normalizing

constants exist, and to determine the limiting distribution functions

L(x) and H(x) where

lir Pr () = lim L (a +8 x) = L(x) (2.3)
n -.con n n n n

and

lim Pr <x = lim H n(Yn +6 nX) = H(x) . (2.4)
--- I noo n-

max~min](XI,X 2,...,Xn) = -min[max](-X,-X2 ,..,-Xn) , (2.5)

the theory for the largest extreme is identical to the theory for the

smallest extreme and vice versa. However, we shall, for the sake of

completeness, give the pertinent results for both the maxima and

the minima.

1 ___m
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The fundamental result in the theory of extreme values was

* discovered by Frechet, and by Fisher and Tippet in 1928, and was

formalized in 1943 by Gnedenko. It states that if (X(n)- yn)/6n

has a limiting distribution H(x), then H(x) must have one of the

three possibZe forms. An analogous result also holds for (X(1 ) -%n)/Bn.

The immediate implication of this result is that irrespective of what

the original distribution F is, the asymptotic distribution of X(n)

(if it exists) is any one of three possible forms. Thus, the asymptotic

distribution of the extreme values is in some sense akin to the normal

distribution for the sample mean. This property of the asymptotic

distribution of the extremes is another motivation for our study of

the limiting distributions.

We shall summarize the above results via the following theorem

of Gnedenko.

Theorem 2.1 (Gnedenko): Let Xlx 2*--.,xn be independent and

identically distributed with distribution function F, and let

X(n) - max(X l x,. - .,xn). Suppose that for some sequences of

normalizing constants {ynd, and {6n > 01, and some other constants

a) 0, b >0

lim Pr x  4 b H(x (2.6)

for all continuity points of x, where H(.) is a nondegenerate distri-

bution function. Then, H(.) must belong to one of the following three

"extreme value types":

I(largest) H(1)( x--a) = exp exp (- -)) I -C<x<Co (2.7)

6
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0 x<a

II(largest) H(2) ( -xj-  (2.8)

exp a) x;a , L>0,

IlI(largest) H(3)(x-)= :xp(i) xa a>0 (2.9)

Whenever Equation (2.7), or (2.8), or (2.9) holds for some sequences

yn } and {6n > 01, we shall say that F belongs to the domain of

attraction of H( :1, i=1,2, or 3, and write F(2H('i). Furthermore,

it is not necessary for us to know the exact form of F in order to

determine to which domain of attraction it belongs. A useful feature

of the extreme value theory is that it is just the behavior of the tail

of F(x) that determines its domain of attraction. Thus, a good deal

can be said about the asymptotic behavior of X based on a limited(n)
knowledge about F. We shall formalize the above facts by giving below

the necessary and sufficient conditions for FEO(H('), i=1,2,3.

Theorem 2.2 (Gnedenko): Let x0 <- be such that F(xo) = 1, and

F(x) <1 for all x <x o . Then

a) FeG(H (1 )) if and only if there exists a continuous function

A(x) such that lim A(x) = 0, and such that for all h,

lim 1- F(x(l+hA(x))} e-h
x I - F(x) ;

b) FEO(H(2)) if and only if lim -F(x) k for each

k>O, and c>0;

7
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l-F(x -kh)
c) Fe(H') if and only if lim 0 for each

k>O, and cx>0.

We note from the above theorem, the role played by xo , the tail

point of F; that is, the point where F= 1.

Using the criteria given in Theorem 2.2, we can verify that if F

is either an exponential, or a normal, or a Weibull distribution

(F(x) = 1 -exp(-xa), x >0, a>0), then F belongs to the domain of

attraction of H(1 ) whereas if F is a uniform distribution, then

F 3 this conclusion of course is for the largest values.
Another property exhibited by the extreme value type distributions
H(i)(.), i=1,2,3, is that they belong to their own domain of attraction.

That is, ) for i=1,2, or 3; this is also referred to as

the seZf-looking property.

Methods for determining the constants yn and 6n involve some

additional notation and detail, and these can be found in Gnedenko

(1943) or Calambos (1978).

Analogous to the three "extreme value types" for the largest

values given in Theorem 2.1, we have three extreme value types for

the smallest values X(1 ). That is, if

1  a x-a
lim Pr I n = L , then L(.) must belong to one
n =  n

of the following:

I(smallest) LO)'x --. x 1 a . <x<. (2.10)

8
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(O , x<a

II(smallest) L (2) (2.11)

1-exp (-x , x;a , c >O

(3rx 1 -ex p ( - x a , x<a , > 0

III(smallest) L (2.12)
1 x>a.

Using criteria which are analogous to Theorem 2.2, we can verify

that if F is a normal distribution, then FE9(Ll )), whereas if F is

an exponential, a uniform, or a Weibull, then FE-(L(2) ). Here again,

the distributions L(i) are self-locking. By way of a comment, we note

that L(2)() is in fact the Weibull distribution which was mentioned

before and which is quite popular in reliability theory.

Current research in extreme value theory is being vigorously

pursued from the point of view of dropping the assumption of independence

and considering dependent sequences Xl'X26"'n* One widely used class

of dependent random variables is the exchaneale one.

Definition [Galambos (1978), p. 127]: The random variables

XlIX 2,*.,Xn are said to be exchangeable if the distribution of the

vector (Xi ,Xi ,.-.,X i ) is identical to that of (X1 ,*.,Xn) for all
1 2 n

permutations (1li2 ,..- in) of the subscripts (l,2,...,n).

Generalizations of Gnedenko's results when the sequence Xl,**.. Xn

is exchangeable are given in Chapter 3 of Galambos (1978). For an

excellent and a very readable, albeit mathematical, survey of results

when the sequence X,.*.0,Xn is dependent, we refer the reader to

Leadbetter (1975).

Another aspect of the current research in extreme value theory

pertains to multivariate extreme value distributions. An entry on

I"Multivariate Extreme Value Distributions" appears in the forthcoming

Encyclopedia of StatiaticaZ Sciencee.

9
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3. Estimation of the Parameters of the Asymptotic Distributions

In order for us to discuss methods for estimating the parameters

a, b, and a of the distributions H(i) and the L( i , i=1,2,3, it will
be helpful if we recognize several relationships which exist between

them.

For example, if we denote the asymptotic distribution of

X(n), x(1 by H(1)(a,b), and the asymptotic distribution of

(1)' L by L (a,b), then it can be verified that

Y (n) def- X(n)' has the distribution L(1)(-a,b). We shall denote the

above relationship by writing " H (a,b)-. L'l)(-a,b). m In a

similar manner, if we denote H(i)(x - a) and L(i)(x - a) by H(i)(a,b,a) and

L(i)(a,b,a) respectively, for i=2,3, then H(2)(a,b,a) X(n) L (3)(-a,b,a) and

H(3)(a,b,a) () (-a,b,). If, however, Y and the
()X (n)'

location parameter a= O, then H(2)O,b,, ) ,.L (O,b'1,a) and

H'3(Ob,a) (-n.)L (O,b ',c). Other transformations that are of

interest are (n) -e- X(n) and Y(1) =Ln X(1); these give usineet Xr (n) '2e'and X X

H(l)(a,b) -e nXn L(2)(O,e-a,b-1) and L(2)(O,b,&) X(lL(1)(In b,cL1).

If we suppress the arguments of the H(i) and the L(i), iul,2,3,
then the following illustration, suggested to us by Mr. M.Y. Wong,

is a convenient summary of the above relationships.

It is easy to verify that in the following illustration the reverse
relationships also hold. For example, if

10
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(n)n

H(3 )  X ' L( 3 )

Y d() then L(3) (ab, ) H(2) (-a,b,a), and so on.

In view of this last relationship, and the relationships implied by

the illustration given above, it follows that we need only consider

the distribution L(1 )(a,b). All the other distributions considered

here can be transformed to the distribution L(1)(a,b), either by a

change of variable or by a change of variable with a setting of the

location parameter equal to zero. It is because of this fact that

some of the literature on the Weibull distribution with a location

parameter of 0 (L(2)(O,b,a)) appears under the heading of "an extreme

value distribution" which is a comnon way of referring to the

distribution

When the location parameter a associated with the distributions

H(') and L" ), 1-2,3, cannot be set equal to zero, most of the

relationships mentioned before do not hold, and thus we cannot be

content by just considering the distribution L(1)(a,b). We will have

to consider both H(2)(a,b,a) and H(3)(a,b,a) or their duals L(3)(-a,b,a)

and L(2)(-a,b,ci), respectively. Estimation of the parameters a

(or -a), b, and L is discussed in the next section.

11
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3.1 Estimation for the Three-Parameter Distributions

The standard approach for estimating the three parameters

associated with H(i) and L" ) , t-2,3, is the one based on the method

of maximum likelihood. Because of the popularity of the Weibull

distribution, the case L(2) (a,b,c&) has been investigated very extensively.

We shall give below an outline of the results for this case, and guide

the reader to the relevant references.

Let X(1) ,X(2) ' *'- X be the smallest ordered observations(1) 'X(2) (n)
in a sample of size n from the distribution L(2)(a,b,a). Harter and

Moore (1965), and also Mann, Schafer, and Singpurwalla (1974), p. 186,

(to be henceforth abbreviated as MSS), give the three likelihood

equations and suggest procedures for an iterative solution of these.

They also give suggestions for dealing with problems which arise when

the likelihood function increases monotonically in (OX(1)).

Lemon (1974) modified the likelihood equations so that one need

iteratively solve only two equations for estimates of the location

parameter a and the shape parameter a, which then specify an estimate

of the scale parameter b.

MSS discuss, as well, the graphical method of estimation, quick

initial estimates proposed by Dubey (1966), and iterative procedures

involving linear estimates as leading to a median unbiased estimate

of a. (A recent result of Somerville (1977) suggests that in iteratively

obtaining a median unbiased estimate of a Weibull location parameter,

k, defined at the bottom of p. 341 in MSS, should be approximately k/5.)

Rockette, Antle, and Klimko (1974) have conjectured that there

are never more than two solutions to the likelihood equations. They

show that If there exists a solution that is a local maximum, there

is a second solution that is a saddle point. They also show that, even

if a solution (aB,&) is a local maximum, the value of the likelihood

12



Rockwell Intemational
Science Center

SC5065.4TR

function L(ab,&) may be less than L(ao,bo0%) where ao = x(1),
and ao - 1, and bo = maximum likelihood estimate of the mean of a

two-parameter exponential distribution.

3.2 Estimation for the Two-Parameter Distributions

When the location parameter a associated with the distributions
H(i) and L( )," 1=2,3, is known, or can be set equal to zero, then there

are several approaches that can be used to obtain good point estimators

of the parameters b and a. The same is also true when we are interested

in the parameters a and b of H(1 ) and L l ). These approaches involve

an iterative solution of the maximum likelihood equations, and the

use of linear estimation techniques.

3.2.1 Maximum Likelihood Estimation

The maximum likelihood method has the advantage that it can be

applied efficiently to any sort of censoring of the data.

For all the extreme-value distributions, the order statistics are

the sufficient statistics. Thus, unless there are only two observations,

the sufficient statistics are not complete and no small-sample optimality

properties hold for the maximum likelihood estimators. The maximum

likelihood estimators of the two parameters are, however, asymptotically

unbiased as well as asymptotically normal and asymptotically efficient.

One can use the maximum likelihood estimates with tables of Thoman,

Bain, and Antle (1970) and of Billman, Antle, and Bain (1971) to

obtain confidence bounds on the parameters.

3.2.2 Linear Estimation Techniques

Linear techniques allow for the estimation of the two parameters

of interest without the necessity of iteration. See MSS pp. 191-220

13
9
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and the entries Weibull distribution, beat linear invariat (BLI)

estimators and beat Zinear unbiwaed (BLU) estimators. Tables of Mann,

Fertig, and Scheuer (1971) and Mann and Fertig (1973) can be used with

either the BLI or BLU estimates to obtain confidence and tolerance

bounds for censored samples of size n, n-3(l)25. See also MSS, p. 222,

for tables with n-3(1)13. Thomas and Wilson (1972) compare the BLU

and BLI estimators with other approximately optimal linear estimators

based on all the order statistics.

If samples are complete and sample sizes are rather large, one

can use tables of Chan and Kabir (1969) or of Hassanein (1972) to

obtain linear estimates of a and b based on from 2 through 10 order

statistics. These tables apply to weights and spacings for the order

statistics that define estimators that are asymptotically unbiased

with asymptotically smallest variance. Hassanein's results have the

restriction that the spacings are the same for both estimators, but

he also considers samples with 10 percent censoring. Tables of Mann

and Fertig (1977) allow for removal of small-sample bias from Hassanein's

estimators and give exact variances and covariances. This enables one

to calculate approximate confidence bounds from these estimators.

For samples having only the first r of n possible observations,

the unbiased linear estimator of Engelhardt and Bain (1973) for the

r

parameter b, br*n = i~l x(s) -X(i)(nkrn)
' is very efficient, especially

for heavy censoring. To obtain b*.n , one need only know a tabulated

value of kr, n and an appropriate value for s; s is a function of r

and n.

A corresponding estimator for a is then given by

a X E(Z )b** where Z= (X -a)/b.
rn (s) s r,n s (s)

14
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MSS, pp. 208-214, 241-252, give tables and references to additional

tables for using these estimators. More recent references that aid in

the use of these estimators are in Engelhardt (1975).

The estimators b.n and a**n approximate the BLU estimators and

can be converted easily to approximations to the BLI estimators, which

in turn approximate results obtained by maximum likelihood procedures.

The estimator n has the property that 2b* /var(b* /b) is veryhas r,n r,n

nearly a chi-squared variate with 2/var(b** /b) degrees of freedom. Thisr,n
property holds for any efficient unbiased estimator of b, including a

maximum likelihood estimator corrected for bias. Because the BLI

estimators so closely approximate the maximum likelihood estimators of

b, tables yielding biases for the BLI estimators can be used to correct

the maximum likelihood estimators for bias.

The fact that unbiased estimators of b are approximately chi-squared

variates has been used to find approximations to the sampling distributions

of functions of estimators of a and other distribution percentiles.

MSS describe an F-approximation that can be used with complete samples

to obtain confidence bounds on very high (above or below 90 percent),

or very low distribution percentiles, or with highly censored data to

obtain a confidence bound for a. The precision of this approximation

is discussed by Lawless (1975) and Mann (1977, 1978). Engelhardt and

8ain (1977) have suggested the use of a in X2 approximation, the regions

of utility of which tend to complement those of the F-approximation.

Lawless (1978) reviews methods for constructing confidence intervals

or other characteristics of the Weibull or extreme-value distribution.

15
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